Tracing the Skyline

Dr. Matt Tomkins

Task

Using a compass (used for measuring horizontal angles) and Abney level (used for measuring vertical angles), estimate the elevations of the mountains surrounding Keswick.

Context

Mountains hold special scientific, cultural, and economic significance. Throughout history, they have been used to demarcate the boundaries between regions. More recently, triangulation from mountain summits has allowed us to estimate the size and dimensions of countries with much greater accuracy and precision e.g. the Principal Triangulation of Great Britain (1791-1853), as shown below:

Figure 1: Maps of Great Britain and Ireland before triangulation (left: Atlas Cosmographicae by Gerardus Mercator, 1512 - 1594) and after triangulation (right: Principal Triangulation of Britain, 1791 - 1853). While triangulation was used for local mapmaking prior to this date, with the earliest evidence for the technique dating to $\sim 1000 \mathrm{AD}$, this was the first attempt to apply the technique to an entire country.

While mountains, coastlines and land areas are measured today using GPS and satellites, triangulation is still used for many purposes, including surveying, navigation, metrology etc. It is also an important component of Geographic Information Science (GIS).

Finding the distance to objects

We can calculate the height of distant objects using trigonometry.
However, we first need to know the distance to them. This can be achieved by measuring the horizontal angles to that object from two (or more) other measurement points.

For example, let's say we are in particular location (we'll call it Point A) and are interested in feature of the landscape (e.g. a mountain, Peak I), but do not know how far away it is or its elevation:

If we can see that same feature from a different location (as shown below, Point B), then we can estimate the distance to the unknown point (and in future, it's height) with only a few simple measurements using a compass (horizontal angles) and an Abney level (vertical angles):

The theory

If we know the distance between our locations, we could sketch out a birds-eye view of the landscape:

Point of interest

Unknown distance away

Our first step is to measure the horizontal angles from A and B to the measurement point using a compass. The final angle of the triangle (Angle C) equals 180 - Angle A - Angle B, because the interior angles of a triangle $=180^{\circ}$.

Point of interest

Unknown distance away

Measurement point A Measurement point B

Using this information, the distances between A-C and B-C can be calculated using the trigonometric formulas shown below:

Point of interest
Unknown distance away

Measurement point A
Measurement point B

Lots of maths here, but don't be alarmed.

Finding the height of objects

Once we know the distance to an object, finding its height is comparatively easy. This involves measuring the vertical angle to it (using the Abney level) and using the following formula:

Height $=$ distance $\times \tan ($ angle $)+$ elevation of the observer

An example: Peak I

Here are measurements for Peak I. The distance between Point A and Point B was 847 m , and the horizontal angles to Peak I were 48° and 123° respectively ${ }^{1}$, which gives us the following birds-eye view:

NOT DRAWN TO SCALE

Using the distance formulas shown on p.4, we can now work out the length of the sides:

Side $\mathbf{A}-\mathbf{I}=847 \mathrm{~m} \times \sin (123) \div \sin (9)=\sim 4541 \mathrm{~m}$
Side B-I $=847 \mathrm{~m} \times \sin (48) \div \sin (9)=\sim 4024 \mathrm{~m}$

[^0]I also measured the vertical angle to Peak I from both locations. This was approximately 5° from Point A and 6° from Point B:

Using the height formulas shown on p.4, we can now work out the height of peak I, remembering to add on the elevations of the measurement points!

Height $\mathbf{I}($ from $\mathbf{A})=4541 \mathrm{~m} \times \tan (5)+87 \mathrm{~m}=484.4 \mathrm{~m}$
Height $\mathbf{I}($ from B) $=4024 \mathrm{~m} \times \tan (6)+84 \mathrm{~m}=506.9 \mathrm{~m}$

Result:

The actual recorded height of the mountain is 502 m , so we're off by approximately 18 m and 5 m respectively.

Q: Would you consider this to be a good result?
Q: What are the limitations of our approach?
Q: How could these be addressed?

Putting theory into practice

With all this information at your disposal, your task for today is to visit locations in Keswick and use a mirror compass and Abney level to estimate the elevations of the surrounding mountains.

Measurement points are denoted as \mathbf{A} and \mathbf{B} and are shown on the map on the following page. You will be given a GPS to locate the exact locations.

At each point, you'll need to measure the directions (compass) and vertical angles (Abney level) to nearby mountain summits. These are numbered II, III and IV:

Each group should have multiple compasses and Abney levels, so take the opportunity to collect a number of measurements as a group to find the correct value. Try to be as precise as possible.

Viewpoint locations: Keswick

Point A 54.59747, -3.14189, 96 m a.s.l
Point B 54.58995, -3.14089, 85 m a.s.l

Point A (Crow Park)

54.59747, -3.14189, 96 m

At Point A, take measurements for Peaks II, III and IV:

Direction $\left({ }^{\circ}\right)$ to Peak II =
Vertical angle $\left(^{\circ}\right)$ to Peak II =

Direction $\left({ }^{\circ}\right)$ to Peak III =
Vertical angle $\left({ }^{\circ}\right)$ to Peak III $=$

Direction $\left({ }^{\circ}\right)$ to Peak IV =
Vertical angle $\left({ }^{\circ}\right)$ to Peak IV $=$

Point B (Friar's Crag)

54.58995, -3.14089, 85 m

At Point B, take measurements for Peaks II, III and IV:

Direction $\left({ }^{\circ}\right)$ to Peak II =
Vertical angle $\left(^{\circ}\right)$ to Peak II =

Direction $\left({ }^{\circ}\right)$ to Peak III =
Vertical angle $\left({ }^{\circ}\right)$ to Peak III =

Direction $\left({ }^{\circ}\right)$ to Peak IV =
Vertical angle $\left({ }^{\circ}\right)$ to Peak IV $=$

Calculations

The simplify the calculations for you (and to save you all from having to relieve the trauma of trigonometry), I've done this for you on Google Sheets, with a separate sheet for each group:

https://tinyurl.com/tracing-group-1

https://tinyurl.com/tracing-group-3
Group 3

Group 2

https://tinyurl.com/tracing-group-2

Group 4

https://tinyurl.com/tracing-group-4

All there is for you to do is add your measurements on the Inputs tab, and see the output summit elevations on the Results tab.

Competition

You will be in groups of $3-4$. When you've completed your measurements, you should be able to estimate the elevations of peaks II, III and IV with some accuracy using the Google sheet formulas. The group which gets closest to the true elevation of each peak will be the winner (prizes will be awarded).

[^0]: ${ }^{1}$ I've missed talking about a key step here (for simplicity) which involves converting compass measurements to the interior angles of a triangle. \mathbf{Q} : Why is this step needed?

